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Abstract
Objective The aim of this work is to use quantitative magnetic
resonance imaging (MRI) to identify patients at risk for symp-
tomatic osteoarthritis (OA) progression. We hypothesized that
classification of signal variation on T2 maps might predict
symptomatic OA progression.
Methods Patients were selected from the Osteoarthritis
Initiative (OAI), a prospective cohort. Two groups were iden-
tified: a symptomatic OA progression group and a control
group. At baseline, both groups were asymptomatic
(Western Ontario and McMaster Universities Arthritis
[WOMAC] pain score total <10) with no radiographic evi-
dence of OA (Kellgren–Lawrence [KL] score≤1). The OA
progression group (n=103) had a change in total WOMAC
score greater than 10 by the 3-year follow-up. The control
group (n=79) remained asymptomatic, with a change in total
WOMAC score less than 10 at the 3-year follow-up. A clas-
sifier was designed to predict OA progression in an indepen-
dent population based on T2 map cartilage signal variation.
The classifier was designed using a nearest neighbor

classification based on a Gaussian Mixture Model log-
likelihood fit of T2 map cartilage voxel intensities.
Results The use of T2 map signal variation to predict symp-
tomatic OA progression in asymptomatic individuals
achieved a specificity of 89.3 %, a sensitivity of 77.2 %, and
an overall accuracy rate of 84.2 %.
Conclusion T2 map signal variation can predict symptomatic
knee OA progression in asymptomatic individuals, serving as
a possible early OA imaging biomarker.
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Introduction

Radiographs are the imaging gold standard for osteoarthritis
(OA) progression, but are unable to detect early OA [1].
Quantitative MRI has the potential to provide sensitive and
specific measurements of cartilage injury in the early stages of
OA. There have been preliminary applications of composi-
tional MRI techniques to detect changes in water and proteo-
glycan content and anisotropy of collagen fibers associated
with early degradation [2–5].

The MRI transverse relaxation time (T2) is an imaging
sequence that holds tremendous potential in detecting early
stages of OA before symptomatic or radiographic presenta-
tion. The T2 signal is a quantitative parameter dependent on
cartilage water content and fiber anisotropy [3, 6–8]. Early in
the pathogenesis of OA, changes in cartilage anisotropy and
water content produce less variability in T2 values between
neighboring voxels. These changes result in less signal varia-
tion between voxels in the T2 map, leading to increased ho-
mogeneity. This is in contrast to the normal articular cartilage,
where regional variations in collagen fiber anisotropy and
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water content provide a well-recognized pattern of signal
variation [3, 9, 10].

Multiple groups have postulated that changes in sig-
nal variation can be used as an imaging biomarker for
OA. Previous reports have demonstrated differences in
signal texture metrics between control and OA groups
[11] and in a single population as arthritis progressed
[12]. T2 signal texture metrics created from multiple
image features can be used as an imaging biomarker
to predict OA progression in asymptomatic groups
[10]. No single imaging measurement of knee cartilage
voxels has been prognostic of symptomatic OA
progression.

We postulate that disruption of the normal spatial variation
in the cartilage T2 signal might be used as an early OA imag-
ing biomarker. To test this hypothesis, T2 map cartilage signal
variation between two asymptomatic groups, where one group
had symptomatic OA progression and the other group did not
progress, was quantified and compared. Patients were collect-
ed from a prospective cohort, the Osteoarthritis Initiative
(OAI).

Materials and methods

Study design and population cohort

To determine if T2 map signal variation could predict
OA progression we used a matched prospective study
from the Osteoarthritis Initiative (OAI). The OAI is a
large prospective cohort (n = 4,796) following partici-
pants for more than 8 years that have or are at an
increased risk for developing OA. The OAI (N= 4,796)
is divided into a series of three sub-cohorts, the normal
control unexposed reference sub-cohort (n= 122), the in-
cidence sub-cohort (n= 3,285), and the progression sub-
cohort (n= 1,389). Annual radiography, MRI, and clini-
cal assessments are performed. A primary objective of
the OAI is to create a public repository of images that
can be used to identify imaging biomarkers for OA. The
OAI is a public–private partnership between the National
Institutes of Health and the pharmaceutical industry, and is
managed primarily by the University of California, San
Francisco, USA [13].

For this study, two groups were identified, a control and a
progression group. A total of 182 patients were selected from
the OAI. Control subjects were selected from the OAI control
sub-cohort. The group was defined at baseline and at 3 years
by a Western Ontario and McMaster Universities Arthritis
(WOMAC) pain score <10 with a Kellgren–Lawrence (KL)
score ≤2. The progression group was selected from the OAI
incidence sub-cohort. The group was defined by the baseline
criteria of a WOMAC pain score less than 10, but with a

change in theWOMAC pain score of>10 within 3 years from
baseline, and minimal radiographic signs of OA with a KL
score ≤2 (Fig. 1). The WOMAC pain score is composed of
five questions related to pain with different activities
(Supplementary Table 1). The WOMAC pain score was se-
lected as a measure of symptomatic progression, as it has been
a well-described and validated patient reported outcome mea-
sure. Each group (control and progression) consists of their
respective OAI sub-cohort (control, incidence) as identified
by the inclusion and exclusion criteria. In the control
group, additional patients were excluded because base-
line MRI images did not exist or a minority of random-
ly selected patients were excluded to create the matched
cohort study to match age, gender, and BMI between
the two study groups. All images used in this study
were collected at the initial baseline visit during the
enrollment period, unless otherwise noted. All images
collected in this study were part of a normal course of
participation in the OAI, and no images were collected outside
of the OAI study protocol.

Fig. 1 Experiment design schematic [10]. The Osteoarthritis Initiative
(OAI) control cohort was used to build the nonprogression group (n = 79).
The OAI incidence cohort was used to build the rapid progression
population (n = 103). At the initial time point, both populations were
asymptomatic. At the 3-year time point, the rapid progression population
experienced a Western Ontario and McMaster Universities Arthritis
(WOMAC) score change > 10. T2 map signal variation was quantified
using Gaussian mixture models (GMMs) applied to the baseline images.
A classifier, a stochastic variant of the nearest neighbor classification,
designed based on the training data sub-set, was used to predict OA
progression on an independent test set, with the test set classification
accuracy then measured
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Image acquisition, registration, segmentation, and T2
maps

The femoral cartilage on T2map sequences at baseline needed
to be segmented so that signal intensity in each voxel of fem-
oral cartilage could be identified. To accomplish this, DESS
images were used for segmentation as there is increased con-
trast between cartilage and soft-tissue structures. The DESS
images then need to be registered to the respective T2 map of
each patient so that the segmented mask of femoral cartilage
could be applied to the T2 map.

In the OAI cohort, three-dimensional sagittal DESS and T2
mapping images were acquired from the imaging database,
which is freely available on request (http://oai.epi-ucsf.org).
Three-dimensional DESS with water excitation images and
T2 mapping images were acquired using sequences approved
for the National Institutes of Health (NIH)-sponsored
Osteoarthritis Initiative study at 3 T [13]. MRI of the knee
joint was performed on a 3.0-T Siemens whole-body
MAGNETOM Trio 3 T scanner (Siemens, Erlangen,
Germany) using a standard extremity coil. For high spatial
resolution 3D double echo steady-state (DESS) imaging [14]
, a total of 160 sections were acquired with a field of view
(FOV) of 14 cm (matrix 384 × 384) with an in-plane spatial
resolution of 0.365 × 0.365 mm, a slice thickness of 0.7 mm,
and an acquisition time of 11 min. For a sagittal 2D dual-echo
fast spin echo (FSE) sequence for mapping T2 relaxation time,
TR was 2,700 ms and 7 echo images with TE ranging 10–
80 ms were acquired with matrix of 384 × 384, in-plane res-
olution of 0.313 × 0.313 mm, FOVof 12 cm, acquisition time
12min, and slice thickness 3mm. All participating institutions
obtained institutional review board approval, and informed
consent was obtained by all participants in the study.

The DESS and T2 images were registered using mattes
mutual information metric and segmented using an active
shape model, as previously described [10, 15]. Segmentation
of the femur was completed on DESS images and binary
masks of the lateral and medial femoral condyle and the pa-
tella were generated from the segmented images. T2 maps
were calculated from the multi-slice–multi-echo T2 images
using a linear least squares fitting method [16].

Classifier design and training

An image classifier, a stochastic variant of the nearest neigh-
bor classification, was used to quantify differences in the sig-
nal variation and to develop a model to predict OA progres-
sion [17]. Voxel signal variation in femoral cartilage was
modeled by buildingGaussianmixture models (GMMs) using
the expectation maximization algorithm [17] and determining
the number of components by minimizing the Bayesian infor-
mation criterion [18]. A separate GMM was built for each
training image.

A stochastic variant of the nearest neighbor algorithm
was used for the classification of progression and con-
trol groups. Analogous to the traditional nearest neigh-
bor algorithm, which finds the training point that is
nearest to the current test point, our classification algo-
rithm finds the training image GMM model that, when
used to fit to the test image, gives the greatest data log
likelihood. We then use the winning model’s class label
as the prediction of the patient’s class. In this way, we
predict for the test patient whether or not their condition
will develop into symptomatic OA. Specific details of
the construction of the GMM, expectation maximization,
the Bayesian information criterion, and pruning are included
in the Supplementary methods section.

To assess the performance of the classifier, we ran-
domly divided the entire cohort into ten independent,
separate, and equal-sized training and test sub-sets, with
equal numbers of control and progression individuals. In
each of the ten trials, the classifier was trained to dis-
criminate between control and progression OA popula-
tions using the training set, and the accuracy of the
classifier and confusion matrix were measured on the
independent test set. It should be emphasized that the
training and test sub-sets were independent, and mea-
surements of the accuracy of the model did not include
any images from the training set used to build the
model.

Results

Signal variation in the femoral cartilage of T2maps was quan-
tified. There are multiple ways to measure signal variation
between adjacent voxels. Several different voxel arrange-
ments were tested (Fig. 2).We found that the optimal accuracy
is obtained by measuring signal variation in a horizontal di-
rection (horizontal bivariate model).

The receiver operating characteristic (ROC) curve illus-
trates the performance of a binary classifier system (Fig. 3).
To create the ROC curve, we first calculated, for each test
image, the difference in log-likelihood under the best-fitting
OAmodel and the best-fitting control model.We then sequen-
tially detected test images in decreasing order of this log-
likelihood difference. The area below the ROC curve is
0.87. At a selected operating point on the ROC curve, speci-
ficity and sensitivity were 89.3% and 77.2% respectively, and
the overall accuracy was 84.2 %.

Discussion

Given that T2 values can represent the loss of structural orga-
nization in cartilage, we hypothesized that variation in
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cartilage voxel intensity on T2 maps could be used as
an imaging biomarker for the symptomatic progression
of OA as measured by the WOMAC score. Signal var-
iation was quantified using a mixture model that could
incorporate sub-populations of different voxel intensi-
ties, and a classifier was used to separate these groups.
Overall accuracy was 84 %.

Multiple methods have been used to quantify T2 map sig-
nal variation. Previous work has used different texture metrics
to quantify signal variation. These include a histogram, the
gray level co-occurrence matrix (GLCM), and the gray level
run length matrix. On a longitudinal basis in populations de-
veloping OA, the GLCM has been shown to change as a
function of time [12]. Comparing controls and populations
at an increased risk for developing OA, differences in the
mean T2 signal, GLCM contrast, and variance were elevated
[19]. Compared with unexposed controls, populations that

have clinically significant OA had differences in signal
texture [11]. We have reported that texture metrics can
be combined into a single value and used as a prognostic
imaging biomarker [10].

Our results here support these findings, extend these
results, and achieve improved discrimination of the OA
progression and control groups. Unlike previous work
using multiple texture metrics to quantify signal varia-
tion, a single measure, cartilage signal variation, could
be used to predict OA progression. Mixture models al-
low the presence of sub-populations of voxel intensities
to be represented in an overall population. Compared
with different texture metrics where multiple metrics
can be selected, we described here signal variation
using a single model. A classifier is used to transform
the measurements of MR signal variation into an imag-
ing biomarker. We improved on the accuracy of previ-
ous models using this technique. It works by comparing
a test image with models of trained images and making
a decision based on finding the nearest neighbor, i.e.
finding the training image that most resembles the test
image. These findings support the concept that T2 map-
ping can monitor cartilage degeneration in OA from an
early time point. The overall accuracy of the approach
demonstrates the feasibility of using T2 signal variation
as an imaging biomarker in early OA. Further work
assessing the reproducibility and sensitivity to change
across different populations for this potential biomarker,
as outlined in the Outcome Measures in Rheumatology
(OMERACT) filter, needs to be completed. The ability
to differentiate patients at risk for symptomatic OA pro-
gression would be valuable in clinical and epidemiolog-
ical studies for disease-modifying OA drugs (DMOADs)
and joint-preserving surgical interventions.

Fig. 2 Classification accuracy
for five candidate GMMs. a
Horizontal bivariate, b vertical
bivariate, c four-pixel box
multivariate, univariate, and
conditional horizontal bivariate. d
The horizontal bivariate model
gives the best accuracies, both for
the control and rapid progression
populations

Fig. 3 Receiver operating characteristic (ROC) analysis demonstrates
prognostic accuracy. Sensitivity is measured as the true-positive rate.
Specificity is one minus the false-positive rate. The diagonal line
represents the result of random chance
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